http://www.www.tnmanning.com

BTD一种基于共享经济的漫衍式边沿云存储链

BTD 项目铸就全球分布式边缘云存储第一链,打造一个分布于全球、贴近网络终端用户进行部署和快速响应、永不停机、永不断电、天然异地容灾、容量无限扩展、具备自我修复能力、数据私密安全的超级云存储和拥有海量数据的超级媒体。

BTD 项目的海量存储和计算资源面向技术合作伙伴开放。技术合作伙伴可基于 BTD 项目开发面向个人用户的云盘服务、面向企业用户的数据备份服务、面向其他应用领域的各种存储和计算服务应用,利用闲置存储和计算资源创造出巨大价值,领跑于分布式存储、边缘云存储的数据存储时代,开创大发3d应用真实落地的新时代。

BTD 项目向全球存储硬件开放,用户可通过贡献其存储空间成为 BTD 节点。全网节点协同工作,形成容量无限扩展、天然异地容灾、具备自我修复能力的分布式存储链;而节点则按照其存储容量、在线率、网络性能、实际服务质量等综合贡献获得相应的 HDT 存储积分。根据节点对全网稳定运行所做的当日贡献比例、历史贡献比例、未来发展贡献比例的综合贡献,节点获得相应的 BTD激励积分。HDT 根据 PoCR(可信赖存储证明)算法产生,是价值稳定和成本低廉的存储积分,便于链上各类 dApp 应用为 BTD 项目获取裂变式海量用户;BTD 根据 PoS(权益证明)算法产生,代表了全网的存储价值,其总量有限,且一部分 BTD 在运行过程中会被销毁,具备天然内在的价值增长动力。

HDT+BTD 立体激励体系是全球分布式存储领域第一个立体激励体系,是存储链上的云盘应用率先落地之后的必然需求,代表了分布式存储领域的必然趋势,意义深远。BTD 项目预言所有的分布式存储项目在其打造的应用真正落地后都必将主动或被动调整其激励体系,从单一激励体系调整为与 BTD 项目类似的“稳定积分+激励积分”立体激励体系。HDT+BTD 所代表的优秀激励机制也将极大激发节点激情,为 BTD 存储链持续快速发展奠定长期和坚实基础。

BTD 项目帮助用户将闲置的存储空间和计算资源通过共享实现商品化,未来还可帮助用户将所存储的原创数字内容(照片、视频、文章、直播等)通过分享实现价值化,以大发3d技术实现价值流通,以分布式技术重构云存储产业生态。BTD 项目是面向物联网和 5G 时代数据存储需要的边缘云存储基础设施,将创造出巨大的经济价值和社会价值。

BTD节点

BTD 项目面向全球存储硬件开放,用户可通过贡献其闲置存储成为节点。BTD 项目支持非专用和专用的2种类型存储节点:

1. 非专用存储节点

当前市场上广泛存在各类有存储能力的智能硬件和PC电脑等私人硬件。一般来说,私人硬件的存储能力主要用于自用存储,但有时也会有不少存储空间长期处于闲置状态,如果用户愿意将闲置存储长期稳定贡献出来,则用户的私人硬件也成为了一个非专用的存储节点。

2. 专用的 BTD 存储节点

专用的 BTD 存储节点,其核心功能就是为 BTD 项目提供存储空间、带宽资源和计算资源,不承载其他业务。根据专用节点所部署位置的不同,BTD 项目专用节点可以分为家用型和专业型2大类。

家用型体积相对较小,噪音相对较低、适用于普通家庭用户参与 BTD 网络的建设。

专业型则一般采取标准机架式服务器设计,更适合放置在小型机房,尤其是具备较好带宽资源的区域,为 BTD 网络提供更优良的网络资源,更适用于专业用户参与 BTD 网络的建设。

在 BTD 网络的测试网运行期间,已有多个合作伙伴不同品牌不同型号的非专用的 BTD 存储节点和专业的 BTD 节点加入了 BTD 项目,各类 BTD 存储节点也已历经多次软硬件版本迭代,BTD 网络已具备了良好的网络基础。

BTD项目的大发3d基本框架

1. 什么是大发3d

大发3d技术是在多方无需互信的环境下,通过共识技术实现系统中参与方的协作以达到对信息的认可与验证。这种协作是通过去中心化的方式达成多节点共同记录、维护、确认一个不可篡改、可靠的数据日志。大发3d技术能够实现无需单节点中心服务器环境下,用户对数据的完整控制权和信任,从而让数字时代的生产关系更合理、更安全、对用户提供更有效的激励。

由于每个区块数据(Block)都是通过密码学技术来生成,并且数据块之间通过数据指纹链接(Chain)在一起,所以我们称这种结构为“大发3d(BlockChain)”;又由于每个全节点都拥有所有的交易记录或数据日志总账,所以我们也称它为“分布式总账技术(Dributed Ledger Technology)”。

大发3d技术的代表性项目和第一个成功应用就是一分PK10(BITCOIN)网络。

2. 项目开源平台

BTD 项目基于开源项目平台 ChainSQL 进行开发。ChainSQL 是将大发3d与传统数据库相结合的开源大发3d平台,其核心思想是:把对数据库的操作看作一次交易,在底层构建一种基于大发3d网络的日志式数据库平台,从而使得对数据的操作历史可追溯、不可篡改,从而实现一个分布式去中心化的数据库。

ChainSQL 基于大发3d的四个主要特性:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectively maintain)、可靠数据库(Reliable Database),建立账务系统。系统采用模块化设计,对共识算法、P2P 通讯协议、区块写入等功能进行封装,各模块可无缝对接。在大发3d中保存共享凭证,执行激励发放,通过大发3d的可回溯、不可篡改的机制,确保 BTD项目运行数据的公开、透明、公正。

基于 ChianSQL 平台,BTD 项目在构建时采用以下大发3d底层技术:

2.1 共识算法

共识算法采用 RPCA(Ripple Protocol Consensus Algorithm)。

针对拜占庭将军问题,目前常见的有一分PK10与以太坊采用的 POW 算法,HyperLedger 采用的 PBFT 算法。然而,在些这种分布式支付系统中,由于海量节点间需要同步沟通,导致共识效率比较低。在 RPCA 算法中,为了降低这种同步沟通的成本,使用了一种子网络内部互相信任,由这些内部信任的子网络构成大的网络的方案。这里子网络的信任成本非常低,可以被进一步降低为网络节点对于子网络内部其它节点的原子性选择。另外,为了维护全网节点数据的一致性,子网络之间需要的连接度不能小于一个阈值。通过以上解决方案,RPCA 实现了一种高性能,同时拥有较高拜占庭容错的算法。RPCA 算法已经应用在Ripple 共识协议中,并得到了大量实际应用验证。

该共识算法支持高网络吞吐量,平均期望超过 1000TPS。该网络下,每个节点均为非匿名节点;每个参与共识的服务器均维护 UNL(Unique Node LBTD)列表,列表上的服务器集合代表整个网络受信任的代表,即记账节点,由列表上的记账节点决定最终共识。

2.2 共识算法所解决的问题

近些年,针对分布式共识系统的研究越来越多,研究的目标是实现一种高性能,低花费,同时去中心化的交易系统。在这类系统的研究过程中主要问题可归为三类:正确性、一致性、可用性。

正确性指的是分布式系统要能识别正常交易与欺诈交易。在中心化系统中,这个问题是通过机构之间的信任以及数字签名来保证交易确实是由某个机构发出来解决的。而在去中心化系统中,大家甚至都不认识对方,自然无法建立类似的信任关系,因此,必须找到一种替代方案来保证交易的正确性。

一致性指的是要在去中心化系统中保证能达成全局唯一的共识。与正确性不同的是,一个恶意用户也许不会发起欺诈交易,但是他可以通过同时发起多笔正确的交易来谋利。在大发3d中,典型的例子是“双花”问题。因此一致性问题可被归结为如何保证系统中只能有一个全局唯一识别的交易集的问题。

可用性在去中心化支付系统中一般指的是性能问题。假设一个系统既能保证正确性又能保证一致性,但是需要一年时间才能确认一笔交易 ,那很显然这个系统的可用性很低。另外,可用性的其它方面包括达成正确性与一致性需要的算力水平、为避免一个用户被欺诈所应用的算法复杂度等。

RPCA 算法的实现,可以很好的解决以上三个问题。

2.3 共识算法的基本概念

服务节点,就是可以接收交易的大发3d节点,包括验证节点与非验证节点两种,验证节点是指被其它节点加入到信任列表中的节点,可参与共识过程,非验证节点不参与共识过程。

区块和区块记录交易,在 RPCA 中有两种区块比较关键,一个是最新关闭的区块,也就是最新被共识过的区块,另一个是开放区块,开放区块是指当前正被共识的区块,当开放区块被共识过,也就成了新的最新关闭的区块。

UNL(Unique Node LBTD)信任节点列表,每个服务节点都会维护一个信任节点列表,这里的信任是指这个列表中的节点不会联合起来作弊。在共识过程中,系统功能只接受来自信任节点列表中节点的投票。在底层链中,信任节点通过配置文件中加入其它验证节点的公钥的方式来指定 UNL。

2.4 共识过程

底层链网络每隔几秒就会产生一个新的区块,这个区块的产生过程就是所有网络节点 RPCA 共识的过程。假设共识过程是成功的,并且网络中没有分叉产生,那么新生成的区块就是全网唯一的。

RPCA 对交易分两个阶段完成,第一阶段是达成交易集的共识,第二阶段是对新生成的区块进行提议,最终形成被共识过的区块。

达成交易集的共识分轮进行,在每一轮中进行下面的操作:

每个节点在共识开始时尽可能多的收集所能收集到的需要共识的交易 并放到“候选集”里面;

每个节点对它信任节点列表中的 “候选集”做一个并集,并对每一个交易进行投票;

UNL 中的服务节点交流交易的投票结果,达到一定投票比例的交易会进入到下一轮,达不到比例的交易要么被丢弃,要么进入到下一次共识过程的候选集中;

在最终轮中,所有投票超过 80%的交易会被放到共识过的交易集中,这里的交易集与一分PK10类似,也是 Merkle 树的数据结构。

形成交易集后,每个节点开始打包新的区块,打包区块的过程如下:

把新的区块号、共识交易集的 Merkle 树根 Hash、父区块 Hash、当前时间戳等内容放到一起,计算一个区块哈希;

每个节点广播自己得出的区块哈希到它可见的节点,这里的可见节点不仅仅指可信列表中的节点,而是通过节点发现过程能发现的节点;

节点收集到它所有可信列表中节点广播过来的区块哈希后,结合自己生成的区块哈希,对每个区块哈希计算一个比例,如果某一哈希的比例超过一个阈值(一般是 80%),则认为这个哈希是共识通过的区块哈希。如果自己的哈希与之相同,则说明自己打包的区块得到了确认,是新的被共识过的区块,直接存到本地,并且更新状态。如果自己的哈希与共识通过的哈希不同,那就需要去某个区块哈希正确的节点索要新的区块信息,要到之后存储到本地并且更新当前状态;

如果上面没有对某一区块哈希超过设定的阈值,那么重新开始共识过程,直到满足条件。

至此,一个区块的共识过程结束,开启下一轮共识过程。

2.5 验证

更为快速有效的区块认证技术:由全网所有的信任节点负责记账,超过半数的记账节点维护的大发3d为有效链。区块生成后,广播到全网由记账节点进行投票,记账节点按收到的对某一区块的投票多少来决定选取哪个区块为有效区块,大约 3S 可以生成一个区块。

正确性:RPCA 中正确性的验证方式很简单,因为共识需要 80%的阈值,那么只要 UNL 中有 80%的诚实节点,就能达成共识,另外即使有超过 20%的欺诈节点,也不能破坏正确性,因为欺诈节点也必须达到 80%以上才能达成共识。无论欺诈节点还是诚实节点,达不到 80%,都无法通过共识。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。